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A Fault-Tolerant Permutation Network 
Modulo Arithmetic Processor 

Ming-Bo Lin and A. Yavuz Orug, Senior Member, IEEE 

Abstract-Conventional fault-tolerant modulo arithmetic pro- 
cessors rely on the properties of a residue number system with 
L redundant moduli to detect up to L / 2  errors. In this paper, 
we propose a new scheme that combines r-out-of-s residue codes 
with Berger codes to concurrently detect any number of module 
errors without any redundant moduli. In addition, this scheme 
can tolerate L faults if L redundant moduli are used, and has 
the property of graceful degradation when the number of faulty 
moduli exceeds L.  Finally, it is shown that the added cost for 
fault tolerance is much less than those were reported earlier in 
the literature. 

Index Terms- Concurrent error detection, fault tolerance, 
graceful degradation, module discard, modulo arithmetic 
processor, and permutation network. 

I. INTRODUCTION 

S IN OTHER computations, reliable computing is critical A in arithmetic processors as well. In particular, when 
such processors are used in critical applications such as flight 
navigation, medical analysis, and real time monitors. 

In general, two approaches can be used to detect errors in 
a digital system. The first is off-line testing which requires 
interrupting the normal operation of the system to diagnose 
it for faults; the second is on-line error detection which can 
be carried out during the normal operation of the system. Off- 
line testing is effective for detection of hard (i.e, permanent) or 
long duration circuit faults only, while on-line testing (usually 
called concurrent error detection, or CED for short) can detect 
transient faults (or called soft) faults, which are predominant 
in modern digital systems. 

Fault detection and correction techniques fall into three ma- 
jor categories. The first category deals with redundant residue 
number system (RRNS) which has a number of redundant 
moduli [19], [32]. The second category exploits the arithmetic 
codes [28]. The third category uses a discarding policy. 

Most efforts to date in the first category rely on the 
fact that if the proper redundant moduli are included in the 
residue number system (RNS) code, then the special algebraic 
structure of the RNS allows the computational errors to be 
detected and corrected [2], [7], [ l l l ,  [191, 1321, [331. In 
general, an RRNS with L redundant moduli can detect up 
to L residue digit errors or correct up to residue digit 
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errors [ 191. However, the hardware required for detecting and 
correcting the error is very complicated. In addition, these 
schemes are implemented by ROM lookup tables. This is 
ineffective when the underlying modulo arithmetic unit is 
not constructed by using ROM lookup tables such as those 
proposed by these authors [ 151, [ 161. 

The second category for error detection and correction is 
based on arithmetic codes which have two varieties: A N  codes 
[3], [19], where A is the generator of the code and N is 
the information represented, and residue codes [28]. Several 
totally self-checking error detection circuits for low-cost AN 
codes with generator A = 2” - 1 have been suggested [8], 
[22], [23]. However, no effective error detection and correction 
procedure has been reported. 

The residue code with check base A is the code which 
attaches to an arithmetic value X a check value X’ where 
X’ = X mod A .  that is, it forms ( X ,  X ’ )  pair. The essence 
of residue codes is the fact that they preserve their properties in 
arithmetic operations: addition, subtraction, and multiplication. 
That is, let N I  and N2 be two positive integers and R1 and 
R2 be their respective residues, then ( N I  f N2) rnod A = 
(RI  f R2) rnotl A and (NlN2)  mod A = (RI&)  mod A .  A 
sufficient and necessary condition for using residue codes to 
detect and correct errors in a digital system has been given 
in [lo]. Several residue generators have been reported in the 
literature [5], [24]. 

The third category of error detection and correction is based 
on discarding of the faulty modulus [27]. The rational behind 
this is that if the faulty modulus is known then after the 
residue digit represented by the faulty modulus is removed the 
remaining residue digits still represent a legitimate number. 
Therefore, the redundancy can be reduced considerably. In 
general, one can correct up to L digits in a system with L 
redundant moduli. Using this idea, Taheri er al. [30] designed 
an RNS processor with the capability of distributed fault 
detection. However, their design requires a complicated and 
expensive combination of residue decoders and their error 
detection mechanism is based on the parity code which is 
evidently insufficient for VLSI implementations [ 11, [26]. 

The error detection and correction schemes mentioned 
above except the arithmetic code method are founded on the 
redundant residue number system and they use ROM lookup 
tables throughout the entire system. The error detection and 
correction circuits for these schemes are very complicated and 
costly in both time and hardware [3], [7], [ 111, [19]. Once 
an error is located, the correction proceeds in an unchecking 
way although self-checking is used during the course of error 
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detection [ 1 11, [ 121. To reduce the hardware cost, an algorithm 
that combines the operations of scaling and single residue error 
correction into one circuit were proposed in [29]. Although this 
reduces the hardware cost of the scaling and error correction 
circuit by using the same mixed radix conversion circuit, the 
entire circuit, which is called an error correction circuit with 
scaling (EECS), is not self-checking. Therefore, the reliability 
of the circuit is in question. In most modulo arithmetic 
processors, the checkers and error correction circuits can 
no longer be assumed to be error free because checker circuits 
are constructed from the same components as the circuits that 
perform the arithmetic operations and hence are subject to the 
same types of failures [28]. Thus, the checkers and the error 
correction circuits must be able to detect and indicate this fact 
when errors occur inside these circuits. 

In this paper, we improve the aforementioned results by 
introducing self-checking Berger code checkers into an arith- 
metic processor which was described in [151. This new ap- 
proach exploits the r-out-of-s code representation of the 
perands of an arithmetic processor to distribute the error 
detection into each modulus r n , .  As such, it can be viewed as a 
“discard the faulty modulus” approach. The result is a simple 
modulo arithmetic processor that can detect any number of 
module errors without any redundant moduli. Furthermore, it 
can tolerate up to L faults if L redundant moduli are used. 
The remainder of this paper is organized as follows. Section 
I1 describes a cyclic permutation network and establishes its 
fault detection property. Sections I11 shows how to design a 
CED arithmetic processor using cycllic permutation networks. 
Section IV extends this CED arithmetic processor to obtain a 
fault-tolerant arithmetic processor and the paper is concluded 
in Section V. 

11. CYCLIC PERMUTATION NETWORK 
In this section, we examine the effects of most common 

faults in NMOS circuits [ l ] ,  [18] on cyclic permutation 
networks which will be used in Sections I11 and IV to construct 
a CED arithmetic processor and a fault-tolerant arithmetic 
processor. 

We first recall the definition of an r-out-of-s residue code. 
Definition 1: (r-out-of.9 residue code) Let 

r n l ;  m 2 .  . . . . vi, be painvise relatively prime numbers 
and s = rril + rr ,z  + . . . + m,. Then an r-out-of-s residue 
code is defined to be a code whose codewords are of length 
s and have r partitions each containing exactly one “1” . 
That is, an r-out-of-s residue codeword is a concatenation 
of r 1-out-of-mi codewords for 1 5 i 5 ‘r. 

From this definition, it is easy to see that 1-out-of-ni, code 
is a special case of r-out-of-s residue code with r = 1 and 
s = rri,.  

In general, a cyclic permutation network consists of three 
function blocks: a switching network, an input encoder, and 
some output buffers. The input encoder converts the binary 
input operand Y into its equivalent two-rail binary form to 
control the switches in the switching network. The switching 
network performs the required permutation operation on its r- 
out-of-s residue coded operand. . The output buffers provide 
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the interface between two cyclic permutation networks. These 
buffers are not necessary for the operation of the cyclic 
permutation network but included to restore the signal strength 
and hence to reduce the delay [21]. The cyclic permutation 
networks in our arithmetic processors are implemented using 
NMOS switches or CMOS transmission gates. Fig. 1 shows 
how a binary to 2-out-of-5 residue encoder is implemented on 
a cyclic permutation network using NMOS switches. 

We consider only transistor failures in our MOS circuits. 
Two common faults of MOS transistors are stuck-open and 
stuck-on faults [ I ] .  

Definition 2: (uniformfault) The faults in a circuit are 
called uniform if they all cause the transistors to be stuck-open 
or stuck-on but not both. 

Definition 3: (unidirectional error) The errors in a circuit 
are called unidirectional if either all the errors in any codeword 
are from 0 to 1 or they are from 1 to 0. but not both. 

To illustrate how a unidirectional error can occur on the 
network in Fig. 1, suppose that the network receives 01100 on 
its left inputs, and bz = l , b l  = 1. and bo = 0. The network 
will produce the codeword 01100 if all transistors are fault- 
free and no two lines are short-circuited. On the other hand, 
if both transistors A and B are stuck-open then the codeword 
changes to 01111. This is an example of a unidirectional error. 

Definition 4: A path from an input to an output is said to be 
active if it is a signal propagation path under a given switching 
state. 

Theorem I :  Assume that all output lines of the input en- 
coder of the cyclic permutation network under consideration 
are error free. The errors caused by any uniform faults in 
the switching stages of a cyclic permutation network are 
unidirectional. 

Proofl Assume that all pull-up transistors are fault free. 
Any transistor with stuck-open fault will disconnect the active 
path containing the faulty transistor from some input to its 
output. Therefore, the outputs will be always 1’s due to 
using pull-up transistors. This causes a unidirectional error 
at the output of the cyclic permutation network. Similarly, 
any transistor with stuck-on fault might cause multiple paths. 
Some of these may combine both “0”-signal and “1”-signal. If 
such a case occurs, the resulting signal is justifiably assumed 
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to be “0” [21]. Therefore, the stuck-on transistor will absorb 
the “1”-output and causes a undirectional error at the output 
of the cyclic permutation network. 1 1  

The following theorem is a corollary to Theorem 1. 
Theorem 2: Any uniform faults in the switching stages of 

a cyclic permutation network can be detected by an inspection 
of the codewords at its outputs. 

Proofi By the previous theorem, the errors caused by any 
uniform faults are unidirectional. This means the codeword 
at the output of the cyclic permutation network in question 
will have either none or multiple occurrences of 1’s. But this 
invalidates the codeword as an r-out-of-s residue code and 
hence can be detected. ) I  

The following theorem extends this result to uniform faults 
at the output lines of the input encoder of a cyclic permutation 
network. 

Theorem 3: Any uniform faults at the input encoder of a 
cyclic permutation network can be detected by an inspection 
of the codewords at its outputs. 

Proof: Any stuck-on or stuck-open fault inside the input 
encoder of a cyclic permutation network will cause its output 
to be stuck-at-1, stuck-at-0, or floating. These will in turn 
cause the transistors in the switching stages to be stuck-on 
or stuck-open faults. If the result is stuck-on, multiple copies 
of 1’s will propagate to its outputs for at least one code input. 
On the other hand, if the result is stuck-open fault, it will 
block the transmission of any 1’s to its outputs for at least 
one code input. Both these faults, when they do not occur 
simultaneously, invalidate the r-out-of-s residue code at the 
output end of the cyclic permutation network, and therefore 
can be detected. 1 1  

Theorem 4: The errors caused by any single stuck-at fault 
or line-open faults at the input lines of the input encoder 
of a cyclic permutation network cannot be detected by an 
inspection of codewords at its outputs. 

Since no stuck-at fault or line-open fault at 
the input lines of the input encoder of a cyclic permutation 
network can set both output lines of the input encoder to the 
same values (1 or 0), it can never invalidate an r-out-of-s 
residue coded codeword, and hence cannot be detected by an 
inspection of codewords at the outputs of the network. I (  

One way to detect the faults at the input lines of the input 
encoder of a cyclic permutation network is to use two-rail 
code. However, it is not easy to design a self-checking r-out- 
of-s residue code to two-rail code conversion circuit. A better 
alternative is to encode the inputs of the input encoder by a 
Berger code [4] and use a self-checking Berger code checker 
[17l, [2Ol, 1251. 

Dejinition 5 (Berger code): A Berger code is a 
binary block code consisting of (k + [lg(k + 1)1)- 
tuples, (bo,  b i ,  . . . , bk-1,  g o ,  91,. . . , grig(k+l)l-l), where 
( b o , b l , .  . . , b k - l )  is the information part and 
( g o ,  91,. . . , grig(lc+iy -1)  is the check part (Berger check) 
which represents the number of 0’s in the information part. 

An example of Berger code encoded 1-out-of-5 binary 
residue decoder and its function are shown in Fig. 2 and Table 
I, respectively. Any of the inputs on the left, upon receiving 
a 1, causes the row of transistors it feeds to conduct and this 
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TABLE I 
TRUTH TABLE 

output q 
0 1 1 0 1 

4 1 0 0 1 
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forces the outputs to which the transistors are connected to be 
grounded. For example, if the third input is 1 then b2,  bo, and 
go are grounded (0) and bl and g1 remain connected to V d d  (1). 

The Berger code encoded binary residue decoder not only 
can detect the errors caused by the faults inside the decoder but 
also can detect the errors at the input lines of the decoder [ 181. 

It follows that with the addition of a Berger code encoded 
1-out-of-mi binary residue decoder, our cyclic permutation 
networks can be made to detect any uniform faults including 
those at the inputs of the input encoder. 

111. A CED MODULO ARITHMETIC PROCESSOR 

The general structure of cyclic permutation network modulo 
arithmetic processor is shown in Fig. 3. It consists of four 
major parts: 1) two inputs r-out-of-s residue encoders for 
operands X and Y ;  2 )  a cyclic permutation network; and 3) 
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Fig. 4. 3-out-of-15 residue decoder on a cyclic permutation network; T = 

an output r-out-of-s residue decoder. The operation of this 
processor was described in detail in 1151. 

All four parts are constructed from cyclic permutation 
networks. The outputs of the binary residue encoder for 
operand Y are encoded by Berger code and then checked 
by self-checking Berger code checkers [17], [20]. Each self- 
checking Berger code checker receives two inputs: binary 
residue code and Berger check and then generates one pair 
of complement outputs, i.e., 1-out-of-2 code. When the circuit 
is fault-free, it outputs ( 0 , l )  or (1, 0 ) ;  otherwise it outputs 

The operation of the r-out-of-s residue decoder is described 
as follows. First, we carry out the residue decoder by using 
an extension of Garner’s algorithm. Let ( T I ,  T Z ,  . . . , T , )  and 
(z1, 5 2 , .  . . , zP) be the mixed radix and RNS representations 
of X with moduli ml, m2, . . . , m,, respectively. Garner’s 
algorithm receives 1c1 , 22, . . . , z, as input and produces a 
single output. The algorithm given below is a modified version 
of Garner’s algorithm and computes t bits of the binary output 
at a time, where t is some positive number between 1 and 
lg M and M = m1m2.. . m,. 

(1,1) or (0,O). 

Algorithm (r-out-of-s residue decoder) 
Begin 
Step 1: Determine constants c+ satisfying m;c;,j = 
1 mod mj, for 1 5 i < j 5 r,  and constants czt,i satisfying 
2tczt,; = 1 mod mi, for 1 5 i 5 T ,  where t is a positive 
integer 2 max { [lgmil}. This step is carried out off line 
and is not part of the residue decoder. 
Step 2: Let y; = z;, for all i, 1 5 i 5 r. 
Step 3: Base extension to mod 2t. 
3.1 Compute 

lsisr 

: 3, t = 3, ml = 3, m2 = 5, m3 = 7. 

T 3  = ( ( y 3  - T l ) C 1 3  - TZ)c23  mod m3 

3.2 Compute 

5’1 = T I  mod 2t 
S2 = S1 + rZml mod 2t 
5’3 = SZ + r3mlm2 mod 2t 

S, = Sr-l + r,rnlmz.. . m,-l mod 2t (2) 

Step 4: Scaling by 2t. 
Compute yi = (xi - zi)c2t,i and set zi = yi, for all i ,  
1 5 i 5 T ,  where z; = S, mod m;. 
Step 5: Repeat Steps 3 and 4 for 
End 

Fig. 4 depicts a network implementation of the residue 
decoder for T = 3,ml = 3,mz = 5,m3 = 7, and t = 3. 
The number 5 (take (0,2,3) = 87 as an example) enters 
the circuit on the left in RNS, and exits it in binary on the 
right in three iterations; the first iteration computes the least 
significant three bits (=11 l) ,  the second iteration computes 
the next three significant bits (=010), and the last iteration 
computes the most significant bit (=001). 

Because we use r-out-of-s residue codes to encode each 
cyclic permutation network inside the modulo arithmetic pro- 
cessor, and since those cyclic permutation networks with the 
same modulus are cascaded straight without any interface 
using non-r-out-of-s residue codes between them, it suffices 
to use self-checking Berger code checkers in the last stage of 
each modulus or where the outputs are converted to binary. 
Fig. 5 shows an example of CED cyclic permutation network 

- 1 times. 
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binary residue encoder 

Fig. 5 .  A cyclic permutation network modulo arithmetic processor with concurrent error detection. 

modulo arithmetic processor with three moduli, m l  = 3, m2 = 
5,m3 = 7. 

To collect the faults detected by the self-checking Berger 
code checkers and produce a final error indication signal, the 
two-rail outputs of the self-checking Berger code checkers are 
fed into a two-rail code checker tree [28]. This tree maps m 
input pairs, {(ao, b o ) ( a l ,  b l )  . . . (~"-1, bm-l)} to an output 
pair, (20, zl). The output pair is complementary if and only if 
each and every input pair is complementary [31]. In general, 
to reduce the hardware cost, the tree is designed by modular 
approach, that is, it is divided into h levels. A complete tree 
with h levels of cells, where each cell is an m-bit two-rail 
comparator, can be used to compare mh bits and contains 
(mh- l ) / (m-  1) cells. The value of m determines the number 
of code inputs required for testing the tree, that is, 2", where 
m is the size of the bit vectors compared by each cell [13], 
[14]. An example can be found in [28]. 

IV. A FAULT-TOLERANT PROCESSOR 

Fault-tolerance is the ability of a system to continue to 
perform its functions after the occurrence of faults. In a modulo 
arithmetic processor, since each module works independently 
except in the final residue decoder stage where they are 
combined together, any correction operation must be done in 
the residue decoder stage. 

Most of the earlier efforts on fault-tolerant processor design 
have focused on the stages before the final residue decoder. 
These efforts assume that the residue decoder is more reliable 
than the other circuits and the correction circuits are error-free 
[6], [7], [12], [29]. However, this is not the case when the 
required output is a binary number which requires a residue 
decoder to combine the values from all moduli into one result 

and the correction circuit is built by the same technology as 
all the other circuits in the processor. Another shortcoming of 
these efforts is that they assume overflows and errors could 
not occur simultaneously [ l l ] ,  [12], [29]. 

Two approaches are generally used to achieve fault- 
tolerance in digital systems. One is a fault masking technique 
that uses redundant circuits which work in parallel and vote 
for the outputs of the system. In this technique, we do 
not need to know the exact faulty module. However, we 
must maintain multiple copies of the system which requires 
excessive hardware cost. 

The second approach is based on reconfiguring the system 
so as to circumvent the faults. In this approach, three steps 
are needed: fault detection, fault location, and fault recovery. 
Most of the published literature on fault-tolerant modulo 
arithmetic processors belong to this class [12], [29]. The bulk 
of this technique is spent in fault detection and fault location. 
Therefore, if the faulty modulus can be located easily then the 
reconfiguration process is reduced to a simple one. 

Taheri et al. [30] proposed a bit-sliced ROM based modulo 
arithmetic processor which can detect the parity error on 
the basis of each modulus. Once detected, faulty moduli are 
discarded. The essence behind this is the following theorem. 

A redundant residue number system (RRNS) 
is defined to be a residue number system with L additional 
moduli. All L + r moduli must be pairwise relatively prime to 
ensure a unique representation for each number in the system 
and each redundant modulus must be greater than any modulus 
mi; 1 5 i 5 r.  

Theorem 5 ([30]):  An RRNS with one redundant modulus 
allows correction of one error if the erroneous modulus is 
discarded. 

DeJnition 6: 
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The next theorem then follows immediately. 
Theorem 6: An RRNS with L redundant moduli corrects 

up to L errors if the erroneous moduli are discarded. 
Taheri et al. used this result to obtain their fault-tolerant 

bit-sliced ROM based modulo arithmetic processor. However, 
their design has two shortcomings. First, their fault model 
assumes only single errors which does not hold for VLSI 
circuits [ 11. Second, they require ( T : L )  combinations of 

residue digits and therefore ( T : L )  copies of residue decoders 
to obtain the final correct output according to the error flag. It 
is clear that this requires too much extra hardware. 

In the following, we combine the features of cyclic per- 
mutation networks, unidirectional detecting codes (l-out-of- 
mi code and Berger code), and self-checking Berger code 
checkers to propose an approach which can tolerate L faults 
if L redundant moduli are used. This approach is also based 
on the principle of discarding faulty modulus. 

The general structure of our fault-tolerant modulo arithmetic 
processor has the same architecture as the CED modulo arith- 
metic processor described in the previous section. However, 
some modifications in the residue decoder must be made so 
that it can be easy to remove a faulty modulus from the system. 
As shown in Fig. 6, two 2 x 1 multiplexers are added to the 
residue decoder. In general, the residue decoder requires (T-1) 
2 x 1 multiplexers. In addition, each modulo arithmetic network 
is confined into a single operation stage with two states: state 0 
is the identity permutation and state 1 is the normal operation. 
These two states are controlled by error indication signals Ei's. 

In order to generate an appropriate set of error indica- 
tion signals to control the operations of cyclic permutation 
networks or the 2 x 1 multiplexers, the cyclic permutation 
networks that operate on the same modulus have an individual 

) arithmetic processor with r = 2, L = 1, ml = 3, m2 = 5 and m3 = 7 

self-checking two-rail checker tree. These cyclic permutation 
networks constitute a residue digit module with modulus m;. 

Once a faulty module within a residue digit module with 
modulus mi is detected, all output is removed from this residue 
digit module (i.e., is effectively removed this faulty modulus) 
to prevent data from reaching succeeding stages. This can be 
done by setting all corresponding arithmetic network stages 
to their identity permutations. To see this, let us recall the 
algorithm described in the previous section. In order to remove 
the effect of residue digit module mi, it is necessary to set all T; 

to 0 and c;j to 1 for 1 5 j 5 T in Step 3.1 and Step 3.2 and set 
S; to 0 and mi to 1 in Step 3.2 of the algorithm. For example, 
in a modulo arithmetic processor with T = 3,  ml = 3,  m2 = 5, 
and m3 = 7, if any module within residue digit module with 
modulus 3 is faulty then we discard this residue digit module 
by setting T I  = 0,c12 = 1, and ~ 1 3  = 1 in Step 3.1 and 
Step 3.2; SI = 0 and ml = 1 in Step 3.2. Therefore, if 
residue code is ( 2 1  , ~ 2 ~ x 3 )  = (2 ,3,  l ) ,  then the result in binary 
representation is 8. Note that if modulus 7 is a redundant then 
8 is within the range spanned by modulus 3 and 5. 

The settings ri = 0 ,  c;j = 1, and mi = 1 are easily affected 
by the cyclic permutation networks. Since the value of T; 

is combined into the subtraction; c;j and m; are combined 
into multiplication, these settings correspond to the identity 
permutations. As for Si, due to the fact that S; is sent to 
residue digit module i + 2, if residue digit module i + 1 is 
faulty, a 2 x 1 multiplexer is used to select and send S; or 
S;+1 into residue digit module i + 2 circuit to obtain a correct 
result. 

An example of fault-tolerant cyclic permutation network 
modulo arithmetic processor with T = 2 , m l  = 3,m2 = 
5 ,  L = 1, m3 = 7 is shown in Fig. 6.  Each of the control 
signals, Ei's, comes from the output via an XNOR gate of 
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the two-rail checker tree of each residue digit module, mi, for 
1 5 i L. 3, are used to control the states of cyclic permutation 
networks and select the sources of the multiplexers. When 
E, = 1 (indicating residue digit module mi is faulty), 
E; signal forces the switch states of all cyclic permutation 
networks which it is connected to identity permutations. This 
effectively removes the effects of the residue digit module 
m; from the system. As indicated in the figure, the number 
of faulty residue digit modules that system can tolerate is not 
constrained to 1. In this figure, if another residue digit module, 
m2 = 5 ,  is also faulty, then after it is removed the system is 
still workable but with the range spanned by modulus ml = 5 
only. That is to say, the operating range of the system is 
degraded gracefully from three moduli to one modulus. In 
general, if L redundant residue digit modules are used then up 
to L faults can be tolerated in a gracefully degrading fashion 
until all residue digit modules are faulty. 

V. CONCLUSION 

In this paper, we introduced a cyclic permutation network 
modulo arithmetic processor which combines the features of 
cyclic permutation networks and unidirectional error detecting 
codes: 1-out-of-mi codes and Berger codes. The resulting 
processor can concurrently detect any number of faulty moduli 
without any redundant moduli and also has fault-tolerant capa- 
bility. It can tolerate L faulty moduli without any performance 
degradation if L redundant moduli are used in the system. In 
addition, it has the characteristic of graceful degradation when 
the number of faulty moduli exceeds the number of redundant 
moduli. 

Comparing our design with the work of Taheri et al. [30], 
our design has the following advantages. First of all, in contrast 
to their single error assumption, our design can detect all 
unidirectional errors. Second, to tolerate L faults, the residue 
decoder of Taheri et. al. needs ( “ : L )  copies of residue 
decoders. In our design only one residue decoder with r + L 
residue digit inputs is required. Thus the hardware cost is 
minimal. Third, to degrade the system gracefully, they need 
much more hardware support whereas in our design no extra 
hardware is required. That is to say we use the same hardware 
for both fault-tolerance and graceful degradation. 

Comparing our design with other similar efforts [12], [29], 
our design also has several advantages. First of all, we do 
not need to assume that overflow and error could not occur 
simultaneously because we do not use the properties of RRNS. 
Instead, we mix the features of cyclic permutation networks 
and unidirectional detecting codes: 1-out-of-m codes and 
Berger codes, into our circuits. Second, [12], [29] need at 
least L redundant moduli for detecting L faults. However, our 
design does not need any redundant moduli if the goal of the 
system is only to detect errors. Third, [ 121, [29] only consider 
the errors which occur before the residue decoder. However, 
this is not the case in most practical applications. Since the 
residue decoder also is a complex circuit, it, in general, is 
as likely to fail as the other circuits in the system. In our 
design, the error detection is for the entire system. Finally, they 
all rely on the MRX algorithm [9] which requires excessive 
hardware to do the error detection. However, in our design we 

use the self-checking Berger code checkers [I71 which have 
less hardware cost than the MRX algorithm. 

As for future research, a major task that remains is an 
effective MOS VLSI implementation of the self-checking 
Berger code checkers used in our CED and fault-tolerant 
arithmetic processors. 
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